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When a structure in one space is projected or mapped or otherwise described in another space or'language', 
then the transformation is usually irreversible. In the case of linear transformations a generalized inverse 
matrix exists even if the transformation matrix is rectangular or singular. This inverse represents the best 
that can be done by way of reverse transformation. Typical crystallographic applications of this inverse 
are developed. Some are in practical computing, where failures due to singularity of a matrix can be 
avoided. Others are in the theoretical treatment of redundant axes, such as are usual in the description of 
hexagonal crystals using four indices and four axes. The idea of the inverse of a set of crystallographic axes, 
normally the reciprocal axes, can be extended to the concept of the inverse of any set of coordinates. 

Introduction 

Suppose that a system described in space A is trans- 
formed, projected or mapped into space B. In general 
information will be lost and the transformation will not 
be reversible unless external information is introduced. 
Nevertheless, a knowledge of the structure as described 
in space B imposes severe limitations on the structure 
in space A from which it could have been derived. 

This situation is extremely common and occurs 
whenever a structure of any type is represented, or 
translated, or described in a different 'language'. We 
will, however, confine ourselves here to crystallo- 
graphic situations. 

The case in which space A is a crystal structure (real 
space), space B is its weighted reciprocal lattice (show- 
ing intensities) and the operation, one of taking the 
square of the Fourier transform, is familiar. The Patter- 
son function then represents in space A (real space) all 
the information available from space B (Fourier am- 
plitude space). It is not the same as the original real- 
space structure. 

If the transformation, projection or mapping is linear 
and represented by a matrix, then this matrix, even 
though it may have no ordinary inverse, has a gen- 
eralized inverse, which represents the best that can be 
done by way of reverse transformation. 

The generalized inverse of a matrix can be applied in 
numerous crystallographic calculations and to devel- 
opments in structural theory. 

The generalized inverse of a matrix 

For every finite matrix P with n rows and m columns of 
real or complex elements, there is a unique matrix Q, 
satisfying the following relations (where P* is the com- 
plex transpose of P and capital letters denote arrays): 

PQP =P 
QPQ =Q 
(PQ)*=PQ 

(QP)*=QP. 

A matrix which satisfies all four conditions is called 
the Moore-Penrose  inverse of P, or, less clearly, the 
generalized or pseudo inverse of P, since other inverses 
satisfying only some of the conditions can also be so 
called. Every matrix, albeit singular or rectangular, 
has an inverse of this type, so that calculation can be 
continued even if there is no ordinary inverse. The set 
of linear equations PX = H [or, giving the dimensions 
of the arrays necessary in setting up a programme, 
P(n,m)X(m, 1)=H(n, 1)] thus has solutions in all cases 
which are, quoting well-known results, as follows (Q, 
the generalized inverse of P, is denoted by P+): 

(a) PX = H has the solution X = p-1H if P has an 
ordinary inverse, that is, is square and non-singular. 
In these circumstances the generalized inverse is the 
same as the ordinary inverse. 

(b) P(m, n)X(n, 1) = H(m, 1) and m > n. Here there are 
more equations than unknowns and X may be over- 
determined. If the surplus ( m - n )  equations are linear 
combinations of the others, the solution X = P+H gives 
the exact answer, and if the equations are inconsistent 
with each other, being observational equations, but are 
sufficient in number, then this expression X=P+H 
gives the least-squares answer where IIH-PXII 2, the 
square of the Euclidean norm, is minimized. 

(c) If X is under-determined by PX= H, and P is 
singular, or there are less equations than unknowns and 
the rank r of P is less than n, then the generalized in- 
verse still gives a unique solution, namely that for 
which [Isl 2 is minimized (Wilkinson & Reinsch, 1971). 
The full solution is X=P+H+ [ I -P+P]Z where Z is 
an arbitrary vector. 

This corresponds to the case in which an attempt is 
made to restore solid structure from a projection. For  
example, the transformation: 

(x')= 1 
0 

(x) 
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projects on to the x1,x 2 plane but when the inverse 
transformation to three dimensions is attempted, the 
x3 coordinate remains unknown or arbitrary. Here 
p+ = p  

and 

/!°°/ ((i°!) (!°!)/ X - -  1 0 (X' )+  1 - 1 Z .  
0 0 /  0 0 

Method of calculation 

The simplest algorithm for calculating the Moore-  
Penrose inverse has been given by, among others, 
Gupta (1971). If QK is the Kth approximation to the 
generalized inverse of the matrix P, then an improved 
approximation QK+ 1 can be obtained from QK+ 1 = 
QK(21-PQK). The trace of PQK is a monotonically 
increasing function of K and converges to the rank of P. 
Iteration is thus stopped when this trace is sufficiently 
close to an integral value. 

The starting matrix Q 1 is taken as a positive constant 
times P*. Properly, ~ should be less than 2/Ama x where 

~max is the largest eigenvalue of PP* or P'P, but it is 
easier simply to take a small value of a and, if this is not 
small enough for convergence, to reduce it and to try 
again. This method is well-known for ordinary inverses 
(Booth, 1955). 

Simple programs have been written in BASIC 
taking advantage of the concise matrix statements. 
PQK may use a square array of order m, but it is not 
necessary to employ such an array and, if n~m,  a 
great saving in storage can be realized by generating 
only one column of PQK at a time. 

The Nott ingham Algorithms Group have produced 
an implementation (NAG Library, FOIBHF) of the 
singular value decomposition programme described by 
Golub & Reinsch (Wilkinson & Reinsch, 1971) from 
which generalized inverses can be obtained to the 
highest standards. 

Comparison of two molecules 

A typical application is in the comparison of two 
similar molecules, each of N atoms, which may, for 
example, occur in the same crystal in non-symmetry- 
related positions. It is desired to bring one as nearly 
as possible into coincidence with the other by rotation 
and translation and to compare the residual discrepan- 
cies of position between corresponding atoms. The 
steps are as follows: 

(a) Reduce each molecule to orthonormal coordi- 
nates X A ( N  ,3) and X~(N,3) with respect to origins at 
the centres of gravity. 

(b) The two sets of coordinates are then to be related 
to each other by a general linear transformation matrix 
A(3, 3) fitted by least squares. Thus XsA = XA is to be 
solved for A with IIX~A -Xal[ 2 minimized, which is the 
sum of the squares of the discrepancies in position. The 

solution is then A = X ~ X  A, when the generalized 
inverse of XB is taken and the actual discrepancies in 
coordinates are (XBA-  X A). 

(c) The transformation matrix A can then be ana- 
lysed if necessary, by calculating its eigenvalues, into 
rotational and dilational parts. Since its dimensions 
are only 3 x 3 this is conveniently done by solving the 
characteristic equation, the coefficients of which are 
the trace, the second invariant and the determinant of 
the matrix A. This latter procedure is convenient for 
comparing coordination polyhedra, as encountered 
in crystals, with the idealized geometrical figures, from 
which they might be considered to be distorted. 

(d) Fletterick & Wyckoff (1975) have incorporated 
a vector b representing the change of centre of gravity 
into the transformation matrix A, which then has 
twelve components: 

(XB1,XB2,XB3) { a l l  a12 a13 bl~ 
~a21 a22 a23 b2/=(XA1,XA2,XA3,1).  
\a31 a32 a33 b3 

This is an alternative to shifting each molecule to its 
centre of gravity. 

The inverse structure of a molecule 

Suppose it is required to compare a range of molecules 
against a standard and to know the transformation 
matrix for the best fit at any stage. That is, A is required 
for a number of sets of Coordinates XR which are each 
matched against a standard set XA. Since A =X+AX, 
the calculation of the generalized inverse of XA need 
be performed once only and A can be found by simple 
multiplication for each set of XB. 

Further, X ] can thus be regarded as a kind of inverse 
structure existing independently. Properly, it consists 
of three points in N-dimensional space but could be 
represented by N points in three dimensions. 

This concept is already used in the relationship be- 
tween real and reciprocal lattice vectors but seems 
capable of generalization. 

The sets of points for which the best orientation 
matrix is to be determined repeatedly may be either 
atoms in real space or sets of reciprocal lattice points 
in transform space. 

The reciprocal lattice 

The matrices of the components of the real and recip- 
rocal lattice vectors with respect to orthonormal axes 
are inverse to each other. ( az) ax ay 

If A =  b~ by b~ 
C x Cy C z 

/' a* a* a * )  
and ARr=~b* b* b* 

\ *  c~ c* c* 

then AAR = I = AR A. 
Consequently, the reciprocal unit cell can. be found 

by taking the inverse of the real unit cell, a simplex of 
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four points (the origin and the ends of the three vectors) 
defining each. Clearly this can be done also in higher- 
dimensional spaces. We have also A A r =  G, the metric 
matrix, and AI~A~ = G-1, the metric matrix for recip- 
rocal space. 

Redundant crystallographic axes 

Suppose that we apply this procedure to the hexagonal 
axes X Y UZ where there is a redundant axis, but take 
the generalized inverse, since a rectangular matrix has 
no ordinary inverse: 

A =  
/ ~ 1 0  ! ) ( 2 - ½ - ½ 0 )  

~ g  gives A + :  ;0 1/q//~ -1 / ] / / 50  

0 0  

so that A+A=I(3 ,3 )  and the product AA + is 

- ] - ~  
-½  

\ 0  0 0 1 

In each case the trace, and thus the rank, of the product 
i~ 3. The elements of AA + are the scalar products 
at. a* and are proportional to the cosines of the angles 
between the four real and the four reciprocal axes. The 
constants of proportionality are found from AA T and 
A+A +r which give lail z and ]a*l z on their diagonals. 
Comparing A and A ÷ shows that the real and the 
reciprocal axes, if plotted in the same three-dimen- 
sional space, are parallel to each other. 

The above gives the system of reciprocal axes dis- 
cussed by Frank (1965) where a point with indices hkil 
(representing the normal to the planes (hkil), which 
make intercepts al/h, a2/k,a3/i, a,/ l  on the four unit-cell 
axes) has the position vector hat  + ka~ + ia~ + la,~ in the 
reciprocal space. Such is not the case for the conven- 
tional Miller-Bravais system where the redundant in- 
dex i is ignored (Nicholas & Segall, 1970), a redundant 
reciprocal axis is not defined, and the first two recip- 
rocal axes are 60 ° and not 120 ° apart. In both cases the 
redundancy condition is h + k + i = 0 in reciprocal space 
and al +a2 +a3 = 0  in real space. 

The tetrahedron 

For some purposes requiring emphasis on the four 
threefold axes it might be convenient to describe cubic 
or tetrahedral structures with respect to four equivalent 
axes (along the [111] directions). Rogers & Klyne 
(1972) have described systems of tetrahedral coordin- 
ates used by themselves and by others and have sug- 
gested a number of applications. Suppose the ortho- 
normal coordinates of the ends of the axes are: 

i 
A =  i 

1 
then the generalized inverse is 

+ w  1 A w -¼ _¼ ¼ 
¼ -¼ -¼ 

The four reciprocal axes are just parallel to the four 
real axes. The indices of the planes are then subject to 
the rule that h + k + i + l = 0. Calculations are carried 
out in the normal way. For example, what is the spacing 
of the plane (3111) (an octahedral plane)? 

r*  * * = 3 a l - - a 2 - - a ~ - - a *  

and converting to vector components along ortho- 
normal unit vectors x, y and z, 

r*=  3 x + ¼ Y + l z  
+¼x+¼Y-¼Z 
-¼x+¼y+¼z 
+¼x-¼Y+¼Z 

= x + y + z, thus (r*. r*) 1/2 = 31/2 
and d = Ir*l-, = 3-1/2 

The icosahedron 
The same procedure can be applied to the six fivefold 
axes in real space which join the origin to the vertices 
of a regular icosahedron. Just as a cell with hexagonal 
symmetry is described using four axes, one redundant, 
to preserve the symmetry, so an icosahedron should 
be described using six equivalent axes. In reciprocal 
space its transform will have the same properties. 

In this notation the coordinates of a point are 
(X1,X2, X3...X6) and r = x l a l  -+-x2a2-+-... + x 6 a  6. C o r -  
r e s p o n d i n g l y ,  if a plane makes intercepts (ai/hi) on the 
six axes, it has the indices (hx,...,h6) and the vector 
from the origin of reciprocal space to the point repre- 
senting the set of planes of spacing d is r * =  
hla* + . . .  + h6a~. 

The twelve vertices of a regular icosahedron thus 
have coordinates ( + 1,0, 0, 0, 0, 0), (0, + 1,0, 0, 0, 0) etc., 
with respect to the icosahedral axes. The indices of a 
plane which is one of the faces of an icosahedron are 
(1,1,1,s,s,s) [where s=O'236068=l / (2z+l )  and r =  
~(1+1/5)], and thus the reciprocal lattice point 
representing the planes is at 

r* = laT + la* + la~ + sa,~ + sa~ +sa~ .  

The actual spacing of this set of planes for unit axial 
lengths is z3/25-1/43-1/2 = 0.794654. 

Since the icosahedron is not the unit cell of a lattice, 
the coefficients are not necessarily integral. In this way, 
by inversion, we obtain an inverse structure which has 
the same point-group symmetry as the original struc- 
ture with respect to the origin chosen. 
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Sets of reciprocal base vectors occur in other con- 
texts. For example, Weinhold (1975, 1976) has recently 
shown that the relationships between thermodynamic 
quantities can be represented as a set of vectors in 
N-dimensional space for extensive variables (such as 
entropy, S; volume, V; mole numbers, N~) each of 
which is associated with a corresponding intensive 
variable (T, P, Ki). The latter can be represented as 
vectors reciprocal to the first set. The rank of the Gram 
determinant gives the dimensionality of the space and 
thus the number of degrees of freedom of the system. 

Real-space refinements of coordinates 

The convenience of the generalized inverse in the cal- 
culation of molecular vibrations (Gellai & Jancs6, 
1972), since there are 3N Cartesian coordinates but 
only 3 N - 6  normal modes, is well recognized. Simi- 
larly, the 3N orthonormal coordinates of a molecule 
can be refined to fit an arbitrary number of internal 
coordinates (bond distances, bond angles and torsion 
angles), so that any other internal dimensions may be 
calculated. This has been referred to as Carnot's 
problem (Mackay, 1974). A general program 
( M O L E C Q )  to do this has been written in BASIC and 
is designed for time-sharing execution. 

Experience shows that, naturally enough, mathe- 
matical behaviour parallels physical behaviour. Sup- 
pose that for a regular helix of ten atoms the nine 
distances, eight bond angles and seven torsion angles 
(24 parameters in all), which are the minimum nearest- 
neighbour relationships to define the structure, are 
given. It is required to refine the 30 coordinates 
(x~yizi) until a set giving exact correspondence with the 
internal parameters is obtained. The problem is non- 
linear and the refinement to minimize the discrepancies 
between the internal parameters for the current con- 
figuration and those required proceeds in cycles. The 
changes to be applied to the 30 coordinates must be 
calculated from the 24 discrepancies. The matrix for 
this set of linear equations 

a~oi aQi , 0~ (for i=  1 to 30) dQi = - f ~ f l x  l +-U~2/~ x 2. . . ~x 2 4 

(AQi represent the discrepancies between current and 
desired parameters appropriately weighted) is, of 
course, singular but, if the generalized inverse is taken 
instead of the ordinary inverse, refinement proceeds 
smoothly and all the (xyz) coordinates converge to a 
final value. 

The conventional procedure is to fix six of the co- 
ordinates so that only 24 have to be found from 24 
equations. It is difficult to choose the six fixed values 
elegantly. If one end of the helix is fixed then the atoms 
next to it must be refined into position before meaning- 
ful corrections can be applied to those much further 
away. Convergence is thus slow. If the generalized in- 
verse is used, the molecule 'floats' with six degrees of 

freedom and convergence of several atoms can take 
place simultaneously. 

Since we are concerned only with internal rela- 
tionships then the 'floating' is of no consequence. 
However, it may be necessary to refine the shape of a 
molecule towards fitting an incomplete range of inter- 
nal parameters, but at the same time making it fit a set 
of external coordinates, such as the peaks in an electron 
density distribution. In this case a number of positional 
equations are added to the above set of internal equa- 
tions: 

A x i =  l . Axi  . 

The weights with which these positional discrepancy 
equations are added to those concerning discrepancies 
of internal parameters must be judged by trial. Adding 
such terms has the effect of making the matrix non- 
singular, adding weight to the diagonal terms. 

Ref'mement of structure factors 

The previous section has dealt with the refinement of 
atomic positions to minimize discrepancies between 
current and desired real-space parameters. The gen- 
eralized inverse can also be used in reciprocal-space 
refinement of calculated structure factors to match 
those observed. 

Using the generalized inverse instead of the ordinary 
inverse may be particularly useful in space groups 
such as P21 where there is a screw axis along y which 
leaves an arbitrary y parameter to be fixed. Considering 
the fixing of the y parameter of a single atom in a large 
molecule as a mechanical restraint applied while a 
large internally sprung assembly is being shaken into 
position convergence can be seen by physical analogy 
to be poor. If no constraint on y is applied then the 
matrix will be singular but the generalized inverse will 
allow the molecule to float uniformly. 

An example of the refinement of a structure in 141 
has been tried and the results will be reported separ- 
ately. 
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